Δημοσίευση

Inactivation of CYLD in intestinal epithelial cells exacerbates colitis-associated colorectal carcinogenesis - a short report.

ΤίτλοςInactivation of CYLD in intestinal epithelial cells exacerbates colitis-associated colorectal carcinogenesis - a short report.
Publication TypeJournal Article
Year of Publication2016
AuthorsKaratzas, D. N., Xanthopoulos K., Kotantaki P., Pseftogas A., Teliousis K., Hatzivassiliou E. G., Kontoyiannis D. L., Poutahidis T., & Mosialos G.
JournalCell Oncol (Dordr)
Volume39
Issue3
Pagination287-93
Date Published2016 Jun
ISSN2211-3436
Λέξεις κλειδιάAnimals, Carcinogenesis, Colitis, Colorectal Neoplasms, Cysteine Endopeptidases, Disease Models, Animal, Intestinal Mucosa, Mice, Mice, Inbred C57BL, Mice, Transgenic
Abstract

PURPOSE: CYLD is a tumor suppressor that has been linked to the development of various human malignancies, including colon cancer. The tumor-suppressing function of CYLD is associated with its deubiquitinating activity, which maps to the carboxyl-terminal region of the protein. In the present study we evaluated the role of intestinal epithelial CYLD in colitis-associated cancer using a conditional mouse CYLD inactivation model.METHODS: In order to evaluate the role of CYLD in intestinal epithelial carcinogenesis, mice (IEC-Cyld (Δ9) mice) that carry a mutation that eliminates the deubiquitinating domain of CYLD in intestinal epithelial cells (IEC) were generated by crossing Villin-Cre transgenic mice to previously generated mice carrying a loxP-flanked Cyld exon 9 (Cyld (flx9) mice).RESULTS: We found that IEC-Cyld (Δ9) mice did not present spontaneous intestinal abnormalities up to one year of age. However, upon challenge with a combination of genotoxic (AOM) and pro-inflammatory (DSS) agents we found that the number of adenomas in the IEC-Cyld (Δ9) mice was dramatically increased compared to the control mice. Inactivation of CYLD in intestinal epithelial cells did not affect the classical nuclear factor-kappaB (NF-κB) and c-Jun kinase (JNK) activation pathways under physiological conditions, suggesting that these pathways do not predispose CYLD-deficient intestinal epithelia to colorectal cancer development before the onset of genotoxic and/or pro-inflammatory stress.CONCLUSIONS: Our findings underscore a critical tumor-suppressing role for functional intestinal epithelial CYLD in colitis-associated carcinogenesis. CYLD expression and its associated pathways in intestinal tumors may be exploited for future prognostic and therapeutic purposes.

DOI10.1007/s13402-016-0279-3
Alternate JournalCell Oncol (Dordr)
PubMed ID27042826

Επικοινωνία

Τμήμα Ιατρικής, Πανεπιστημιούπολη ΑΠΘ, T.K. 54124, Θεσσαλονίκη
 

Συνδεθείτε

Το τμήμα Ιατρικής στα κοινωνικά δίκτυα.
Ακολουθήστε μας ή συνδεθείτε μαζί μας.